
xml.dom — The Document Object Model 
API

Source code: Lib/xml/dom/__init__.py

The Document Object Model, or “DOM,” is a cross-language API from the World Wide 

Web Consortium (W3C) for accessing and modifying XML documents. A DOM imple-

mentation presents an XML document as a tree structure, or allows client code to build 

such a structure from scratch. It then gives access to the structure through a set of ob-

jects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a 

view of one bit of the document at a time. If you are looking at one SAX element, you 

have no access to another. If you are looking at a text node, you have no access to a 

containing element. When you write a SAX application, you need to keep track of your 

program’s position in the document somewhere in your own code. SAX does not do it 

for you. Also, if you need to look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a 

tree. Of course you could build some sort of tree yourself in SAX events, but the DOM 

allows you to avoid writing that code. The DOM is a standard tree representation for 

XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their 

terminology. The Python mapping of the API is substantially based on the DOM Level 2 

recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is accom-

plished is not covered at all by DOM Level 1, and Level 2 provides only limited improve-

ments: There is a DOMImplementation object class which provides access to 

Document creation methods, but no way to access an XML reader/parser/Document 

builder in an implementation-independent way. There is also no well-defined way to ac-

cess these methods without an existing Document object. In Python, each DOM imple-

mentation will provide a function getDOMImplementation(). DOM Level 3 adds a 

Load/Store specification, which defines an interface to the reader, but this is not yet 

available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML docu-

ment through its properties and methods. These properties are defined in the DOM 

Page 1 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



specification; this portion of the reference manual describes the interpretation of the 

specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, 

and OMG IDL. The Python mapping defined here is based in large part on the IDL ver-

sion of the specification, but strict compliance is not required (though implementations 

are free to support the strict mapping from IDL). See section Conformance for a de-

tailed discussion of mapping requirements.

See also:

Document Object Model (DOM) Level 2 Specification

The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level 1 Specification

The W3C recommendation for the DOM supported by xml.dom.minidom.

Python Language Mapping Specification

This specifies the mapping from OMG IDL to Python.

Module Contents

The xml.dom contains the following functions:

xml.dom.registerDOMImplementation(name, factory)

Register the factory function with the name name. The factory function should re-

turn an object which implements the DOMImplementation interface. The factory 

function can return the same object every time, or a new one for each call, as ap-

propriate for the specific implementation (e.g. if that implementation supports some 

customization).

xml.dom.getDOMImplementation(name=None, features=())

Return a suitable DOM implementation. The name is either well-known, the module 

name of a DOM implementation, or None. If it is not None, imports the correspond-

ing module and returns a DOMImplementation object if the import succeeds. If no 

name is given, and if the environment variable PYTHON_DOM is set, this variable is 

used to find the implementation.

If name is not given, this examines the available implementations to find one with 

the required feature set. If no implementation can be found, raise an 

ImportError. The features list must be a sequence of (feature, version)

Page 2 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



pairs which are passed to the hasFeature() method on available 

DOMImplementation objects.

Some convenience constants are also provided:

xml.dom.EMPTY_NAMESPACE
The value used to indicate that no namespace is associated with a node in the 

DOM. This is typically found as the namespaceURI of a node, or used as the 

namespaceURI parameter to a namespaces-specific method.

xml.dom.XML_NAMESPACE
The namespace URI associated with the reserved prefix xml, as defined by 

Namespaces in XML (section 4).

xml.dom.XMLNS_NAMESPACE
The namespace URI for namespace declarations, as defined by Document Object 

Model (DOM) Level 2 Core Specification (section 1.1.8).

xml.dom.XHTML_NAMESPACE
The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible Hy-

perText Markup Language (section 3.1.1).

In addition, xml.dom contains a base Node class and the DOM exception classes. The 

Node class provided by this module does not implement any of the methods or attrib-

utes defined by the DOM specification; concrete DOM implementations must provide 

those. The Node class provided as part of this module does provide the constants used 

for the nodeType attribute on concrete Node objects; they are located within the class 

rather than at the module level to conform with the DOM specifications.

Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple 

strings. It is fairly rare that you must do this, however, so this usage is not yet docu-

mented.

Interface Section Purpose

DOMImplementation
DOMImplementation Ob-

jects

Interface to the underly-

ing implementation.

Page 3 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Interface Section Purpose

Node Node Objects Base interface for most 

objects in a document.

NodeList NodeList Objects
Interface for a sequence 

of nodes.

DocumentType DocumentType Objects

Information about the 

declarations needed to 

process a document.

Document Document Objects
Object which represents 

an entire document.

Element Element Objects
Element nodes in the 

document hierarchy.

Attr Attr Objects
Attribute value nodes on 

element nodes.

Comment Comment Objects

Representation of com-

ments in the source doc-

ument.

Text
Text and CDATASection 

Objects

Nodes containing textual 

content from the docu-

ment.

ProcessingInstruction
ProcessingInstruction Ob-

jects

Processing instruction 

representation.

An additional section describes the exceptions defined for working with the DOM in Py-

thon.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the 

availability of particular features in the DOM they are using. DOM Level 2 added the 

ability to create new Document and DocumentType objects using the 

DOMImplementation as well.

DOMImplementation.hasFeature(feature, version)

Page 4 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Return True if the feature identified by the pair of strings feature and version is im-

plemented.

DOMImplementation.createDocument(namespaceUri, qualifiedName, 
doctype)

Return a new Document object (the root of the DOM), with a child Element object 

having the given namespaceUri and qualifiedName. The doctype must be a 

DocumentType object created by createDocumentType(), or None. In the Py-

thon DOM API, the first two arguments can also be None in order to indicate that 

no Element child is to be created.

DOMImplementation.createDocumentType(qualifiedName, publicId, 
systemId)

Return a new DocumentType object that encapsulates the given qualifiedName, 

publicId, and systemId strings, representing the information contained in an XML 

document type declaration.

Node Objects

All of the components of an XML document are subclasses of Node.

Node.nodeType
An integer representing the node type. Symbolic constants for the types are on the 

Node object: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, 

CDATA_SECTION_NODE, ENTITY_NODE, PROCESSING_INSTRUCTION_NODE, 

COMMENT_NODE, DOCUMENT_NODE, DOCUMENT_TYPE_NODE, NOTATION_NODE. This 

is a read-only attribute.

Node.parentNode
The parent of the current node, or None for the document node. The value is al-

ways a Node object or None. For Element nodes, this will be the parent element, 

except for the root element, in which case it will be the Document object. For Attr

nodes, this is always None. This is a read-only attribute.

Node.attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; 

others provide None for this attribute. This is a read-only attribute.

Node.previousSibling

Page 5 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



The node that immediately precedes this one with the same parent. For instance 

the element with an end-tag that comes just before the self element’s start-tag. Of 

course, XML documents are made up of more than just elements so the previous 

sibling could be text, a comment, or something else. If this node is the first child of 

the parent, this attribute will be None. This is a read-only attribute.

Node.nextSibling
The node that immediately follows this one with the same parent. See also 

previousSibling. If this is the last child of the parent, this attribute will be None. 

This is a read-only attribute.

Node.childNodes
A list of nodes contained within this node. This is a read-only attribute.

Node.firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

Node.lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

Node.localName
The part of the tagName following the colon if there is one, else the entire 

tagName. The value is a string.

Node.prefix
The part of the tagName preceding the colon if there is one, else the empty string. 

The value is a string, or None.

Node.namespaceURI
The namespace associated with the element name. This will be a string or None. 

This is a read-only attribute.

Node.nodeName
This has a different meaning for each node type; see the DOM specification for de-

tails. You can always get the information you would get here from another property 

such as the tagName property for elements or the name property for attributes. For 

all node types, the value of this attribute will be either a string or None. This is a 

read-only attribute.

Node.nodeValue

Page 6 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



This has a different meaning for each node type; see the DOM specification for de-

tails. The situation is similar to that with nodeName. The value is a string or None.

Node.hasAttributes()

Return True if the node has any attributes.

Node.hasChildNodes()

Return True if the node has any child nodes.

Node.isSameNode(other)

Return True if other refers to the same node as this node. This is especially useful 

for DOM implementations which use any sort of proxy architecture (because more 

than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “work-

ing draft” stage, but this particular interface appears uncontroversial. Changes 

from the W3C will not necessarily affect this method in the Python DOM interface 

(though any new W3C API for this would also be supported).

Node.appendChild(newChild)

Add a new child node to this node at the end of the list of children, returning new-

Child. If the node was already in the tree, it is removed first.

Node.insertBefore(newChild, refChild)

Insert a new child node before an existing child. It must be the case that refChild is 

a child of this node; if not, ValueError is raised. newChild is returned. If refChild

is None, it inserts newChild at the end of the children’s list.

Node.removeChild(oldChild)

Remove a child node. oldChild must be a child of this node; if not, ValueError is 

raised. oldChild is returned on success. If oldChild will not be used further, its 

unlink() method should be called.

Node.replaceChild(newChild, oldChild)

Replace an existing node with a new node. It must be the case that oldChild is a 

child of this node; if not, ValueError is raised.

Node.normalize()

Join adjacent text nodes so that all stretches of text are stored as single Text in-

stances. This simplifies processing text from a DOM tree for many applications.

Page 7 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Node.cloneNode(deep)

Clone this node. Setting deep means to clone all child nodes as well. This returns 

the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in 

the DOM Core recommendation: an Element object provides one as its list of child 

nodes, and the getElementsByTagName() and getElementsByTagNameNS() meth-

ods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these ob-

jects:

NodeList.item(i)

Return the i’th item from the sequence, if there is one, or None. The index i is not 

allowed to be less than zero or greater than or equal to the length of the sequence.

NodeList.length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided 

to allow NodeList objects to be used as Python sequences. All NodeList implemen-

tations must include support for __len__() and __getitem__(); this allows iteration 

over the NodeList in for statements and proper support for the len() built-in func-

tion.

If a DOM implementation supports modification of the document, the NodeList imple-

mentation must also support the __setitem__() and __delitem__() methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the ex-

ternal subset if the parser uses it and can provide the information) is available from a 

DocumentType object. The DocumentType for a document is available from the 

Document object’s doctype attribute; if there is no DOCTYPE declaration for the docu-

ment, the document’s doctype attribute will be set to None instead of an instance of 

this interface.

DocumentType is a specialization of Node, and adds the following attributes:

Page 8 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



DocumentType.publicId
The public identifier for the external subset of the document type definition. This will 

be a string or None.

DocumentType.systemId
The system identifier for the external subset of the document type definition. This 

will be a URI as a string, or None.

DocumentType.internalSubset
A string giving the complete internal subset from the document. This does not in-

clude the brackets which enclose the subset. If the document has no internal sub-

set, this should be None.

DocumentType.name
The name of the root element as given in the DOCTYPE declaration, if present.

DocumentType.entities
This is a NamedNodeMap giving the definitions of external entities. For entity names 

defined more than once, only the first definition is provided (others are ignored as 

required by the XML recommendation). This may be None if the information is not 

provided by the parser, or if no entities are defined.

DocumentType.notations
This is a NamedNodeMap giving the definitions of notations. For notation names de-

fined more than once, only the first definition is provided (others are ignored as re-

quired by the XML recommendation). This may be None if the information is not 

provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, at-

tributes, processing instructions, comments etc. Remember that it inherits properties 

from Node.

Document.documentElement
The one and only root element of the document.

Document.createElement(tagName)

Page 9 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Create and return a new element node. The element is not inserted into the docu-

ment when it is created. You need to explicitly insert it with one of the other meth-

ods such as insertBefore() or appendChild().

Document.createElementNS(namespaceURI, tagName)

Create and return a new element with a namespace. The tagName may have a 

prefix. The element is not inserted into the document when it is created. You need 

to explicitly insert it with one of the other methods such as insertBefore() or 

appendChild().

Document.createTextNode(data)

Create and return a text node containing the data passed as a parameter. As with 

the other creation methods, this one does not insert the node into the tree.

Document.createComment(data)

Create and return a comment node containing the data passed as a parameter. As 

with the other creation methods, this one does not insert the node into the tree.

Document.createProcessingInstruction(target, data)

Create and return a processing instruction node containing the target and data

passed as parameters. As with the other creation methods, this one does not insert 

the node into the tree.

Document.createAttribute(name)

Create and return an attribute node. This method does not associate the attribute 

node with any particular element. You must use setAttributeNode() on the ap-

propriate Element object to use the newly created attribute instance.

Document.createAttributeNS(namespaceURI, qualifiedName)

Create and return an attribute node with a namespace. The tagName may have a 

prefix. This method does not associate the attribute node with any particular ele-

ment. You must use setAttributeNode() on the appropriate Element object to 

use the newly created attribute instance.

Document.getElementsByTagName(tagName)

Search for all descendants (direct children, children’s children, etc.) with a particu-

lar element type name.

Document.getElementsByTagNameNS(namespaceURI, localName)

Page 10 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Search for all descendants (direct children, children’s children, etc.) with a particu-

lar namespace URI and localname. The localname is the part of the namespace af-

ter the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

Element.tagName
The element type name. In a namespace-using document it may have colons in it. 

The value is a string.

Element.getElementsByTagName(tagName)

Same as equivalent method in the Document class.

Element.getElementsByTagNameNS(namespaceURI, localName)

Same as equivalent method in the Document class.

Element.hasAttribute(name)

Return True if the element has an attribute named by name.

Element.hasAttributeNS(namespaceURI, localName)

Return True if the element has an attribute named by namespaceURI and local-

Name.

Element.getAttribute(name)

Return the value of the attribute named by name as a string. If no such attribute ex-

ists, an empty string is returned, as if the attribute had no value.

Element.getAttributeNode(attrname)

Return the Attr node for the attribute named by attrname.

Element.getAttributeNS(namespaceURI, localName)

Return the value of the attribute named by namespaceURI and localName as a 

string. If no such attribute exists, an empty string is returned, as if the attribute had 

no value.

Element.getAttributeNodeNS(namespaceURI, localName)

Return an attribute value as a node, given a namespaceURI and localName.

Element.removeAttribute(name)

Page 11 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Remove an attribute by name. If there is no matching attribute, a NotFoundErr is 

raised.

Element.removeAttributeNode(oldAttr)

Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, 

NotFoundErr is raised.

Element.removeAttributeNS(namespaceURI, localName)

Remove an attribute by name. Note that it uses a localName, not a qname. No ex-

ception is raised if there is no matching attribute.

Element.setAttribute(name, value)

Set an attribute value from a string.

Element.setAttributeNode(newAttr)

Add a new attribute node to the element, replacing an existing attribute if necessary 

if the name attribute matches. If a replacement occurs, the old attribute node will be 

returned. If newAttr is already in use, InuseAttributeErr will be raised.

Element.setAttributeNodeNS(newAttr)

Add a new attribute node to the element, replacing an existing attribute if necessary 

if the namespaceURI and localName attributes match. If a replacement occurs, 

the old attribute node will be returned. If newAttr is already in use, 

InuseAttributeErr will be raised.

Element.setAttributeNS(namespaceURI, qname, value)

Set an attribute value from a string, given a namespaceURI and a qname. Note 

that a qname is the whole attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

Attr.name
The attribute name. In a namespace-using document it may include a colon.

Attr.localName
The part of the name following the colon if there is one, else the entire name. This 

is a read-only attribute.

Attr.prefix

Page 12 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



The part of the name preceding the colon if there is one, else the empty string.

Attr.value
The text value of the attribute. This is a synonym for the nodeValue attribute.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

NamedNodeMap.length
The length of the attribute list.

NamedNodeMap.item(index)

Return an attribute with a particular index. The order you get the attributes in is ar-

bitrary but will be consistent for the life of a DOM. Each item is an attribute node. 

Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You 

can use them or you can use the standardized getAttribute*() family of methods 

on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but 

cannot have child nodes.

Comment.data
The content of the comment as a string. The attribute contains all characters be-

tween the leading <!-- and trailing -->, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM imple-

mentation support the DOM’s XML extension, portions of the text enclosed in CDATA 

marked sections are stored in CDATASection objects. These two interfaces are identi-

cal, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

Text.data

Page 13 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



The content of the text node as a string.

Note: The use of a CDATASection node does not indicate that the node represents 

a complete CDATA marked section, only that the content of the node was part of a 

CDATA section. A single CDATA section may be represented by more than one node 

in the document tree. There is no way to determine whether two adjacent 

CDATASection nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node

interface and cannot have child nodes.

ProcessingInstruction.target
The content of the processing instruction up to the first whitespace character. This 

is a read-only attribute.

ProcessingInstruction.data
The content of the processing instruction following the first whitespace character.

Exceptions

The DOM Level 2 recommendation defines a single exception, DOMException, and a 

number of constants that allow applications to determine what sort of error occurred. 

DOMException instances carry a code attribute that provides the appropriate value for 

the specific exception.

The Python DOM interface provides the constants, but also expands the set of excep-

tions so that a specific exception exists for each of the exception codes defined by the 

DOM. The implementations must raise the appropriate specific exception, each of 

which carries the appropriate value for the code attribute.

exception xml.dom.DOMException
Base exception class used for all specific DOM exceptions. This exception class 

cannot be directly instantiated.

exception xml.dom.DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to 

be used in the Python DOM implementations, but may be received from DOM im-

plementations not written in Python.

Page 14 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



exception xml.dom.HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not al-

lowed.

exception xml.dom.IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the al-

lowed values.

exception xml.dom.InuseAttributeErr
Raised when an attempt is made to insert an Attr node that is already present 

elsewhere in the document.

exception xml.dom.InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception xml.dom.InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not 

permitted in the context it’s being used in by the XML 1.0 recommendation. For ex-

ample, attempting to create an Element node with a space in the element type 

name will cause this error to be raised.

exception xml.dom.InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception xml.dom.InvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer 

usable.

exception xml.dom.NamespaceErr
If an attempt is made to change any object in a way that is not permitted with re-

gard to the Namespaces in XML recommendation, this exception is raised.

exception xml.dom.NotFoundErr
Exception when a node does not exist in the referenced context. For example, 

NamedNodeMap.removeNamedItem() will raise this if the node passed in does 

not exist in the map.

exception xml.dom.NotSupportedErr
Raised when the implementation does not support the requested type of object or 

operation.

exception xml.dom.NoDataAllowedErr

Page 15 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



This is raised if data is specified for a node which does not support data.

exception xml.dom.NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such 

as for read-only nodes).

exception xml.dom.SyntaxErr
Raised when an invalid or illegal string is specified.

exception xml.dom.WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, 

and the implementation does not support migrating the node from one document to 

the other.

The exception codes defined in the DOM recommendation map to the exceptions de-

scribed above according to this table:

Constant Exception

DOMSTRING_SIZE_ERR DomstringSizeErr

HIERARCHY_REQUEST_ERR HierarchyRequestErr

INDEX_SIZE_ERR IndexSizeErr

INUSE_ATTRIBUTE_ERR InuseAttributeErr

INVALID_ACCESS_ERR InvalidAccessErr

INVALID_CHARACTER_ERR InvalidCharacterErr

INVALID_MODIFICATION_ERR InvalidModificationErr

INVALID_STATE_ERR InvalidStateErr

NAMESPACE_ERR NamespaceErr

NOT_FOUND_ERR NotFoundErr

NOT_SUPPORTED_ERR NotSupportedErr

NO_DATA_ALLOWED_ERR NoDataAllowedErr

NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr

SYNTAX_ERR SyntaxErr

WRONG_DOCUMENT_ERR WrongDocumentErr

Page 16 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



Conformance

This section describes the conformance requirements and relationships between the 

Python DOM API, the W3C DOM recommendations, and the OMG IDL mapping for Py-

thon.

Type Mapping

The IDL types used in the DOM specification are mapped to Python types according to 

the following table.

IDL Type Python Type

boolean bool or int

int int

long int int

unsigned int int

DOMString str or bytes

null None

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute

declarations in much the way the Java mapping does. Mapping the IDL declarations

yields three accessor functions: a “get” method for someValue (_get_someValue()), 

and “get” and “set” methods for anotherValue (_get_anotherValue() and 

_set_anotherValue()). The mapping, in particular, does not require that the IDL at-

tributes are accessible as normal Python attributes: object.someValue is not re-

quired to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This 

means that the typical surrogates generated by Python IDL compilers are not likely to 

work, and wrapper objects may be needed on the client if the DOM objects are ac-

readonly attribute string someValue; 
         attribute string anotherValue; 

Page 17 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html



cessed via CORBA. While this does require some additional consideration for CORBA 

DOM clients, the implementers with experience using DOM over CORBA from Python 

do not consider this a problem. Attributes that are declared readonly may not restrict 

write access in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should 

take the form defined by the Python IDL mapping, but these methods are considered 

unnecessary since the attributes are accessible directly from Python. “Set” accessors 

should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API, such 

as the notion of certain objects, such as the return value of getElementsByTagName

(), being “live”. The Python DOM API does not require implementations to enforce 

such requirements.

Page 18 of 18xml.dom — The Document Object Model API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.dom.html


